Practical Subgrouping in Medulloblastoma

Dr Reza Rafiee Northern Institute for Cancer Research Newcastle University 10/04/2017 gholamreza.rafiee@ncl.ac.uk

Model and challenges

Aim: designing a reliable classification model to classify samples into one of the four known molecular subgroups.

0.3

An example of incomplete dataset (including missing data/ β -values)

Samples

NA: Missing β-values

		NMB131	NMB139	NMB144	NMB18	NMB189	NMB191	NMB200B	NMB252B	NMB253	NMB256
Features (17 CpG loci) 0 ≤ β-value ≤ 1	cg00583535	0.032745	0.439172	1	0.111825	0.996741	0.057625	0.217027	0.093972	0.034096	0.145916
	cg18788664	1	1	0	1	0.031873	1	0.913201	1	0.339047	0.943376
	cg08123444	0.1066	0.079228	1	NA	1	0.586898	0.97702	0	NA	1
	cg17185060	0.007187	0.037886	0.004611	0.728343	0.00933	0.087176	0.746626	0	0.444619	0.491586
	cg04541368	0	0	0	0.850299	0	0.680833	0.678593	0	0.841218	0.752389
	cg25923609	0	0	NA	0.946696	0	0.797202	0.973674	0	0.901676	0.829593
	cg06795768	0.880937	1	0.027382	1	NA	0.914097	0.979331	0.655427	NA	1
	cg19336198	0.905523	0.927976	1	0.006585	0.970466	0.172354	0.055628	0.788385	0.034565	0.091513
	cg05851505	0	0.039876	0.92197	0.933739	0.812884	0.116958	0.913607	0	0.993595	0.989059
	cg20912770	0.475921	0.472708	NA	0	0	0	0.001091	0.584136	0	0
	cg09190051	0.869717	0.952647	0.019152	0.775619	0	0.785425	0.791433	0.101335	0.84447	0.205207
	cg01986767	0	0.119726	1	1	1	0.965225	1	0.018987	1	1
	cg01561259	0.016316	0.312103	0	0.02257	0.051084	0.038813	0	0.272624	0.019661	0.041625
	cg12373208	0	0	0	0	0.001688	0	0	0	0.012721	0.040306
	cg24280645	0.830303	0.908487	0	0	0	0.056215	0	0.867717	0	0.002044
	cg00388871	0	0.40443	0.160967	0.936523	0.100859	0.544998	0.621359	0.031241	0.661775	0.635058
	cg09923107	0	1	NA	0	NA	0	0	0.637449	NA	0

Categories of missingness

Missing data

Why missing: by using poor quality DNA (e.g., FFPE derived), some loci will fail to be assayed (still is not clear the reason).

Two key questions: 1) what is the acceptable number of missing data (β -values)? 2) how to create a complete dataset from an incomplete one?

63/106 (59%) samples reported complete sets of β -values whereas 5/106 (5%) samples had more than 7 missing β -values (QC measure for CpG locus-specific threshold; black line)

Empirical determination of the maximal number of permissible missing β **-values. a)** The prediction accuracy of the SVM classifier model was evaluated *in silico* by replacing missing data with confounding methylation values, using the transformation shown in the table.

Using the 17-locus signature from 450k DNA methylation array data, random combinations of 1 to 10 β -values were replaced with confounding data and the performance of the classifier assessed. The average area under curve (AUC) from 1000 bootstraps was plotted. An average AUC of > 94% is achieved up to 6 missing β -value data points. Assay performance declines with more than 6 missing β -value data points (QC threshold; blue dotted line).

Package/library in R

- 'Amelia': Bootstrap + EM
- 'mice': Multivariate Imputation using Chained Equations
- 'mi': Multiple Imputation using an approximate Bayesian framework
 - 1) Diagnostics of the models
 - 2) Provides graphics to visualize missing data patterns
 - 3) Provides degree of sampling uncertainty
 - 4) Applicable for categorical data as well

Multiple imputation modelling using <u>Amelia</u> package in R

Assumptions to use this package: missing at random (MAR) and multivariate normality MAR assumption: the pattern of missingness only depends on the observed data, not the unobserved data (missing)

'Impute' definition: assign (a value) to something by inference from the value of the products or processes to which it contributes.

Bootstrapping: random sampling with replacement Why we need bootstrapping: to simulate estimation uncertainty

Multiple imputation involves imputing m plausible values for each missing cell (reflecting the uncertainty about the missing value) in your data matrix and creating m "completed" data sets.

install.packages("Amelia", repos="http://r.iq.harvard.edu",
type = "source")

Imputation results by using "Amelia" and "mice" packages

Predicted subgroup is insensitive to multiple imputation modelling technique. Scatterplot of β -values generated by the bootstrapped-based expectation maximization (BEM) (*x* axis) and multivariate imputation by chained equations (MICE) (*y* axis) showing a strong correlation between the two methods (R²=0.77).

Creating an optimal SVM classifier in R using e1071 package

cost = optimum_cost, gamma = optimum_gamma, probability = T, seed = 1234)

TESTING:

Radial_model <- predict(object= Radial_model, newdata = seq.test.BEM.97, probability=T)

Acknowledgment

Clifford, S.C.¹ Schwalbe, E.C.^{1,2} Hicks, D.¹ Bashton, M.¹, Enshaei, A.¹ Gohlke, H.³, Potluri, S.¹, Matthiesen, J.¹, Mather, M.¹, Taleongpong, P.¹, Chaston, R.⁴, Scott, K.⁴, Silmon, A.⁴, Curtis, A.⁴, Lindsey, J.C.¹, Crosier, S.¹, Smith, A.J.¹, Goschzik, T⁵., Doz, F⁶., Rutkowski, S⁷., Lannering, B.⁸, Pietsch, T.⁵, Bailey, S.¹, Williamson, D.¹,

¹Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, U.K.

²Northumbria University, Newcastle upon Tyne, U.K.

³Agena, Hamburg, Germany

⁴NewGene, Newcastle upon Tyne, U.K.

⁵Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany

⁶Institut Curie and University Paris Descartes, Paris, France

⁷University Medical Center Hamburg-Eppendorf, Hamburg, Germany

⁸Department of Pediatrics, University of Gothenburg and The Queen Silvia Children's Hospital, Gothenburg, Sweden