
Shiny	based	
medulloblastoma
subgroup	classifier
MATTHEW BASHTON

10TH OF	APRIL	2017

Aims
Classifier	designed	by	Reza,	Amir	and	Ed	allows	for	the	subgroup	of	medulloblastoma
(WNT,	SHH,	Group3,	Group4)	to	be	determined	using	17	CpG beta	values	from	Agena
MassARRAY data

Aim	was	to	enable	easy	classification	of	subgroups	via	end	user	in	a	molecular	diagnostic	
setting

Subgroup	classification	essential	for	determining	patient	prognosis	and	treatment	plan

For	this	we	need	an	easy	to	use	web	application

Classifier	is	already	based	in	R,	so	a	Shiny	based	solution	is	naturally	the	choice

Medulloblastoma subgroups

Take	from:	Taylor	et	al.	Acta Neuropathol.	2012	Apr;	123(4):	465–472.

Transcription
RNA	

polymerase
DNA Translation

RibosomemRNA
Folded	

functional	
product
enzyme

Proteins

Central	Dogma	of	Molecular	Biology

Genome
replication

Genomics Transcriptomics:
Gene	expression

Proteomics

Nucleus Cytoplasm

DNA	methylation
A	process	by	whichmethyl	groups (CH3) are	added	to	the	DNA	molecule

Normally	in	humans	it’s	the	C	(cytosine)	bases	preceding	a	G	(guanine)	which	are	methylated:	
CpG

Methylation	is	sparse	but	global,	60-80%	of	all	CpG in	the	genome	are	methylated

Hypermethylation of	CpG sites	in	a	gene	leads	to	gene	silencing,	i.e.	it	is	no	longer	expressed	
and	made	into	protein

DNA	methylation
Methylation	states	can	persist	thought	cellular	replication,	and	are	a	form	of	epigenetics,	i.e.	a	
heritable	trait	not	directly	encoded	by	the	sequence	of	DNA	it’s	self

Particular	subgroups	have	different	methylation	patterns	across	the	genome

These	were	first	detected	by	methylation	arrays,	such	as	the	450k	array,	which	can	detect	
methylation	on	over	450	thousand	different	CpG sites,	we	use	on	17	CpGs in	our	classifier

DNA	methylation
Methylation	status	of	a	CpG is	reported	at	a	β-value:

Where	yi,menty and	yi,unmenty are	the	intensities	mea-sured by	the	ithmethylated	and	unmethylated
probes

Alpha	is	a	kludge	factor,	to	give	a	constant	offset	to	regularise	the	beta	value,	normally	=	100	

β-values	are	between	0	and	1

0	=	all	CpGs at	said	site	in	sample	are	completely	unmethylated,	1	=	all	CpGs at	site	methylated

Beta	value	distribution

β-values	are	normally	distributed	around
0	i.e.	unmethylated

and	0.9	predominantly	methylated

We	only	need	17	carefully	selected	Beta	values	
to	determine	the	type	of	medulloblastoma

CSV file
of peak
heights

Shiny
Interactive	web	development	framework	for	R

Shiny	is	reactive,	this	means	when	inputs	change	outputs	which	use	this	input	change

Very	different	to	the	old	CGI-BIN	style	of	web	development

Everything	is	encoded	as	functions	with	input and	output objects	passed	between	them	different	
slots	are	used	for	each	input/output,	reactive	flow	is	said	connect	functions

Reactive	plumbing	can	get	a	bit	complicated

Allows	for	computationally	expensive	classification	step	to	be	separated	from	display/output	logic	

http://shiny.rstudio.com

An	example	app:	ui.R > library(shiny)
> runExample("01_hello")

library(shiny)

Define UI for application that draws a histogram
shinyUI(fluidPage(

Application title
titlePanel("Hello Shiny!"),

Sidebar with a slider input for the number of bins
sidebarLayout(

sidebarPanel(
sliderInput("bins", "Number of bins:", min = 1, max = 50, value = 30)

),

Show a plot of the generated distribution
mainPanel(

plotOutput("distPlot")
)

)
))

An	example	app:	server.R
library(shiny)
Define server logic required to draw a histogram
shinyServer(function(input, output) {

Expression that generates a histogram, wrapped in a call to renderPlot
1)Its "reactive" and is automatically re-executed when inputs change
2)Its output type is a plot

output$distPlot <- renderPlot({
x <- faithful[, 2] # Old Faithful Geyser data
bins <- seq(min(x), max(x), length.out = input$bins + 1)

draw the histogram with the specified number of bins
hist(x, breaks = bins, col = 'darkgray', border = 'white')

})
})

Shiny	reactivity	
The	reactive	input is	from	input	slider	widget	sliderInput("bins", …) this	will	populate	the	
$bins slot	of	the	input object

On	the	server	side	we	access	this	via	input$bins

We	don’t	have	a	reactive	conductor	in	this	case	simply	input	and	output

The	reactive	output is	our	histogram	which	is	captured	by	wrapping	our	plot	in	renderPlot({}):
output$distPlot <- renderPlot({…})

On	the	UI	side	we	access	the	plot	via:
plotOutput("distPlot")

When	input$bins changes,	output$distPlot will	update	accordingly	with	server	side	code	
re-executing,	we	don’t	need	to	code	explicit	event	handlers	or		arrange	objects	to	be	updated	this	
happens	automatically

Demo	App

http://medullo.ncl.ac.uk

How	it	works	(Briefly)
Main	reactive	classification	function	classifier()does	the	classification	inside	server.R

A	support	function	cleanSeq4()handles	processing	CSV	mass	spec	peaks	input	data

classifier()returns	a	list	classified_data with	all	data	needed	to	populate	reactive	endpoints	on	the	
server	side,	quite	a	lot	of	post	processing	done	on	server	side	to	get	data	ready	to	plot,	tabulate	etc.

Various	plots,	tables	and	downloads	are	handled	by	wrapping	munging/plotting	code	in	reactive	functions	in	
server.R:	renderDataTable({}), downloadHandler({}),	renderText({}),	
renderPlot({})

The	output	of	each	of	the	above	is	assigned	to	a	reactive	end	point	- a	slot	in	the	output	object:	output$X <-
where	X is	the	name	of	the	output	you	want	to	render/plot	in	the	UI	

On	the	ui.R side	the	shiny	helper	functions:	dataTableOutput(),	plotOutput(),	textOutput(),	
helpText(),	downloadButton()create	HTML/JS	to	be	rendered	in	the	browser

App	is	hosted	on	NUIT	provided	Ubuntu	VM,	which	surprisingly	works	quite	well

Overview
MIMIC	will	classify	MassARRAY medulloblastoma methylation	data	in	to	one	of	four	molecular	
subgroups:	WNT,	SHH,	Group	3	and	Group	4.

In	summary	the	classifier	works	as	described	below:

1. We	use	17	different	methylation	probes	in	an Agena	iPLEX	assay ,	the	readout	is	performed	
by	the MassARRAY mass	spectrometer.

2. Peak	heights	from	the	Mass	Spectrometer,	corresponding	to	the	17	probes	for	each	sample	
are	outputted	as	a	comma	separated	.csv	file;	these	values	are	submitted	to	MIMIC	and	
converted	to	β	values	for	each	probe.

3. The	number	of	probes	successfully	reporting	β	values	out	of	the	17	is	assessed	for	each	
sample, imputation (exploiting	our	own	MassARRAY cohort)	is	used	to	impute	any	missing	
values	using multiple	imputation	(MI) modelling	utilising a Bootstrap	Expectation	
Maximisation (BEM)	algorithm	implemented	in	the Amelia	package. We	can	efficiently	
impute	missing	values	of	up	to	6	missing	probes,	if	a	sample	has	more	missing	values	it	is	
said	to	have	failed	Probe	QC	and	is	not	classified.

Overview
4. A	multi-class	optimised Support	Vector	Machine (SVM)	validated	and	trained	on	our	

extensive	450k	medulloblastoma cohort	is	used	to	robustly	assign	a	subgroup	to	samples	by	
their	17	β	values.

◦ Our	SVM	is	validated	using	a	bootstrapping	technique	via	1,000	random	iterations	of	80%	of	the	
training	set,	confidence	interval	derived	from	this	is	plotted	on	the	Classification	Graph	as	a	box	
plot.

◦ The	final	probability	assignment	for	a	subgroup	call	is	made	by	creating	an	SVM	model	with	the	
whole	450k	training	set;	these	probabilities	are	given	in	the	Classification	Table	in	the	initial	tab.

◦ Calls	made	with	a	probability	below	our	predefined	threshold	are	considered	unreliable	and	
samples	will	be	labeled	as	Unclassifiable	in	the	Classification	Table,	these	samples	will	not	be	
plotted	in	the	Classification	Graph.

5. Various	post	processing	and	formatting	operations	on	the	data	take	place	with	the	
interactive	website	being	implemented	in	the	R Shiny reactive	web	application	framework.

Things	to	consider	in	Shiny	app	
development
Easiest	shiny	app	is	simply	to	wrap	all	calculations	+	plot	in	a	single	renderPlot({})function
◦ Will	cause	re-run	of	classification	each	time	you	resize	the	plot,	need	to	isolate	calculations from	output

Speeding	up	code,	I	added	mclapply calls	in	place	of	lapply where	performance	gains	could	
be	had	(not	all	uses	warranted	mclapply)
◦ Run	time	down	from	+30	seconds	to	around	5	seconds

Shiny	app	development	started	after	the	classifier	was	almost	finished,	app	code	need	to	work	
like	a	shim	around	an	existing	code	base		
◦ If	you	can	develop	app	from	ground	up

Most	R	scripts	not	suited	to	an	app in	terms	of	output	weird	tables	and	vectors	only	author	
understands,	in	addition	no	error	handling	either,	script	run	by	hand	line	by	line	interactively

More	lines	of	code	for	web	app	now	than	classifier,	most	of	which	deals	with	applying	
thresholds,	handling	QC	failure	at	sample	level	and	or	classification	failure,	and	giving	graceful	
output	in	addition	to	lots	of	formatting	and	data	munging

Acknowledgments
Feature	selection	of	informative	probes	from	450k	cohort:	Amir	Enshae &	Reza

Machine	learning	and	classifier	code: Reza	Rafiee

Shiny	web	app	code	and	adaptation:Matthew	Bashton

Project	concept	and	MassARRAY file	parser: Ed	Schwalbe

