Shiny based medulloblastoma subgroup classifier

MATTHEW BASHTON

 10^{TH} OF APRIL 2017

Aims

Classifier designed by Reza, Amir and Ed allows for the subgroup of medulloblastoma (WNT, SHH, Group3, Group4) to be determined using 17 CpG beta values from Agena MassARRAY data

Aim was to enable easy classification of subgroups via end user in a molecular diagnostic setting

Subgroup classification essential for determining patient prognosis and treatment plan

For this we need an easy to use web application

Classifier is already based in R, so a Shiny based solution is naturally the choice

Medulloblastoma subgroups

Take from: Taylor et al. Acta Neuropathol. 2012 Apr; 123(4): 465–472.

Central Dogma of Molecular Biology

DNA methylation

A process by which methyl groups (CH₃) are added to the DNA molecule

Normally in humans it's the C (cytosine) bases preceding a G (guanine) which are methylated: CpG

Methylation is sparse but global, 60-80% of all CpG in the genome are methylated

Hypermethylation of CpG sites in a gene leads to **gene silencing**, *i.e.* it is no longer expressed and made into protein

DNA methylation

Methylation states can persist thought cellular replication, and are a form of <u>epigenetics</u>, *i.e.* a heritable trait not directly encoded by the sequence of DNA it's self

Particular subgroups have different methylation patterns across the genome

These were first detected by methylation arrays, such as the 450k array, which can detect methylation on over 450 thousand different CpG sites, we use on 17 CpGs in our classifier

DNA methylation

Methylation status of a CpG is reported at a β -value:

$$Beta_{i} = \frac{\max(y_{i,methy}, 0)}{\max(y_{i,unmethy}, 0) + \max(y_{i,methy}, 0) + \alpha}$$

Where $y_{i,menty}$ and $y_{i,menty}$ are the intensities mea-sured by the i^{th} methylated and unmethylated probes

Alpha is a kludge factor, to give a constant offset to regularise the beta value, normally = 100

 $\beta\text{-values}$ are between 0 and 1

0 = all CpGs at said site in sample are completely unmethylated, 1 = all CpGs at site methylated

Beta value distribution

Beta value distribution for sample Sample6

Beta

Shiny

Interactive web development framework for R

Shiny is reactive, this means when inputs change outputs which use this input change

Very different to the old CGI-BIN style of web development

Everything is encoded as functions with input and output objects passed between them different slots are used for each input/output, reactive flow is said connect functions

Reactive plumbing can get a bit complicated

Allows for computationally expensive classification step to be separated from display/output logic

http://shiny.rstudio.com

An example app: ui.R > library(shiny) > runExample("01_hello")

library(shiny)

))

```
# Define UI for application that draws a histogram
shinyUI(fluidPage(
```

```
# Application title
titlePanel("Hello Shiny!"),
# Sidebar with a slider input for the number of bins
sidebarLayout(
    sidebarPanel(
        sliderInput("bins", "Number of bins:", min = 1, max = 50, value = 30)
    ),
# Show a plot of the generated distribution
mainPanel(
    plotOutput("distPlot")
)
```

An example app: server.R

library(shiny)

```
# Define server logic required to draw a histogram
shinyServer(function(input, output) {
```

```
# Expression that generates a histogram, wrapped in a call to renderPlot
# 1)Its "reactive" and is automatically re-executed when inputs change
# 2)Its output type is a plot
```

```
output$distPlot <- renderPlot({
    x <- faithful[, 2] # Old Faithful Geyser data
    bins <- seq(min(x), max(x), length.out = input$bins + 1)</pre>
```

```
# draw the histogram with the specified number of bins
hist(x, breaks = bins, col = 'darkgray', border = 'white')
```

})

1 show with app Hello Shiny! server.R ui.R by RStudio, Inc. library(shiny) This small Shiny application demonstrates Shiny's automatic UI updates. Move the Number of bins slider and notice how the # Define server logic required to draw a histogram renderPlot expression is automatically re-evaluated when its function(input, output) { dependant, input\$bins, changes, causing a histogram with a new number of bins to be rendered. # Expression that generates a histogram. The expression is # wrapped in a call to renderPlot to indicate that: # # 1) It is "reactive" and therefore should be automatically # re-executed when inputs change # 2) Its output type is a plot output\$distPlot <- renderPlot({</pre> x <- faithful[, 2] # Old Faithful Geyser data bins <- seq(min(x), max(x), length.out = input\$bins + 1)</pre> # draw the histogram with the specified number of bins hist(x, breaks = bins, col = 'darkgray', border = 'white') })

Hello Shiny! Ny RStudio, Inc.	server.R ui.R	1 show with app
This small Shiny application demonstrates Shiny's automatic UI updates. Move the <i>Number of bins</i> slider and notice how the renderPlot expression is automatically re-evaluated when its lependant, input\$bins, changes, causing a histogram with a new number of bins to be rendered.	<pre>library(shiny) # Define server logic required to draw a histogram function(input, output) { # Expression that generates a histogram. The expression is # wrapped in a call to renderPlot to indicate that: # # 1) It is "reactive" and therefore should be automatically # re-executed when inputs change # 2) Its output type is a plot output\$distPlot <- renderPlot({ x</pre>	

The <u>reactive input</u> is from input slider widget sliderInput("bins", ...) this will populate the \$bins slot of the input object

On the server side we access this via input\$bins

We don't have a reactive conductor in this case simply input and output

The reactive output is our histogram which is captured by wrapping our plot in renderPlot({}):

```
output$distPlot <- renderPlot({...})</pre>
```

On the UI side we access the plot via:

```
plotOutput("distPlot")
```

When input\$bins changes, output\$distPlot will update accordingly with server side code re-executing, we don't need to code explicit event handlers or arrange objects to be updated this happens automatically

http://medullo.ncl.ac.uk

	medullo.ncl.ac.uk		+
--	-------------------	--	---

MIMIC: MInimal Methylation Classifier

MassARRAY CSV file upload: Choose File no file selected	Classification Table	Classification Plot	Informative Probes Table	Sample QC	Bisulfite Conversion Efficiency	β-values		
	About Help							
MIMIC will classify MassARRAY medulloblastoma methylation data in to one of four molecular subgroups Download test data to try classifier: Test CSV file	Unclassifiable samples a	re those for which a cor csv	nfident subgroup call could not	be made				

WARNING: MIMIC is for research use only, and should only be used on samples with a confirmed histopathological diagnosis of medulloblastoma. MassARRAY is a registered trademark of Agena Bioscience.

D.	medullo.ncl.ac.uk	Ċ	

Informative Probes Table

MIMIC: MInimal Methylation Classifier

MassARRAY CSV file upload:

Choose File

Upload complete

MIMIC will classify MassARRAY medulloblastoma methylation data in to one of four molecular subgroups

Download test data to try classifier: Test CSV file

About Help			
Show 25 💠 entries			Search:
Sample	Subgroup Call	Probability %	Probe QC
Sample1	Grp4	94	Pass
Sample2	-	-	Fail
Sample3	Unclassifiable	-	Pass
Sample4	WNT	95	Pass
Sample5	Grp4	97	Pass
Sample6	Grp3	88	Pass
Sample7	-	-	Fail
Sample8	Grp4	98	Pass
Sample9	Grp4	97	Pass
Sample10	Unclassifiable	-	Pass
Sample11	Grp3	87	Pass
Sample12	Grp3	86	Pass
Sample13	WNT	74	Pass
Sample14	Grp4	97	Pass
Sample	Subgroup Call	Probability %	Probe QC

Sample QC

Showing 1 to 14 of 14 entries

Classification Table

Classification Plot

Previous 1 Next

Bisulfite Conversion Efficiency

β-values

Unclassifiable and Probe QC failed samples are not shown in this plot. Boxes show the confidence interval for subgroup assignment generated by

	D. 💿		medullo.r	icl.ac.uk		Ċ			0		+
MIMIC: MInimal Methylation Classifier											
MassARRAY CSV file upload: Choose File a test_samples.csv Upload complete MIMIC will classify MassARRAY	Classification Table About Help Show 17 ‡ entries	Classification	Plot Infor	mative Probes T	Table Samp	ole QC Bisu	lfite Conversion	Efficiency	β-values		
of four molecular subgroups	Probe ID Plex	Sample1	Sample2 [‡]	Sample3 [‡]	Sample4 [♦]	Sample5	Sample6	Sample7 [⊜]	Sample8 [♦]	Sample9 [♦]	1
Download test data to try classifier: Test CSV file	cg00388871 Plex 1	0.14	0.53	0.33	0.02	0.09	0.23	0	0.13	0.07	0
	cg00583535 Plex 1	-	-	-	-	-	0.62	-	-	0.97	0
	cg08123444 Plex 1	0.94	-	0.27	0.04	0.94	0.84	1	0.99	0.94	0
	cg09190051 Plex 1	0	-	0.51	0.34	0.06	0.21	-	0.02	0.21	C
	cg12373208 Plex 1	0	0	0	0	0	0	-	0	0	0
	cg18788664 Plex 1	0.18	0.96	0.95	0.64	0.1	0.89	-	0.03	0.2	1
	cg19336198 Plex 1	0.72	0.6	1	0.96	0.95	0.93	1	0.94	0.96	0
	cg01561259 Plex 2	0.05	0.8	0.17	0.61	0.11	0.85	0.33	0.21	0.14	٥
	cg01986767 Plex 2	-	-	-	-	-	1	-	-	-	-
	cg05851505 Plex 2	-	-	1	-	-	1	-	-	-	-
	cg17185060 Plex 2	0.09	0.12	0.08	0.12	0.2	0.28	0.1	0.14	0.19	0
	cg24280645 Plex 2	0.11	0.74	0.06	0.94	0.31	0.32	0.08	0.18	0.13	0
	cg04541368 Plex 3	-	-	-	0.03	0.07	0.06	-	0.04	0.03	0
	cg06795768 Plex 3	-	-	-	-	0.21	0.35	-	0	0.04	0
	cg09923107 Plex 3	-	-	0.11	0.13	0.1	0.08	-	0.22	0.2	0
	cg20912770 Plex 3	0.17		0.02	1	0.03	0.03	0	0.03	0.02	0

How it works (Briefly)

Main reactive classification function <code>classifier()</code> does the classification inside <code>server.R</code>

A support function cleanSeq4 () handles processing CSV mass spec peaks input data

classifier() returns a list classified_data with all data needed to populate reactive endpoints on the server side, quite a lot of post processing done on server side to get data ready to plot, tabulate etc.

Various plots, tables and downloads are handled by wrapping munging/plotting code in reactive functions in server.R: renderDataTable({}), downloadHandler({}), renderText({}), renderPlot({})

The output of each of the above is assigned to a reactive end point - a slot in the output object: output\$X <- where X is the name of the output you want to render/plot in the UI</pre>

On the ui.R side the shiny helper functions: dataTableOutput(), plotOutput(), textOutput(), helpText(), downloadButton() create HTML/JS to be rendered in the browser

App is hosted on NUIT provided Ubuntu VM, which surprisingly works quite well

Overview

MIMIC will classify MassARRAY medulloblastoma methylation data in to one of four molecular subgroups: WNT, SHH, Group 3 and Group 4.

In summary the classifier works as described below:

- 1. We use 17 different methylation probes in an <u>Agena iPLEX assay</u>, the readout is performed by the <u>MassARRAY</u> mass spectrometer.
- 2. Peak heights from the Mass Spectrometer, corresponding to the 17 probes for each sample are outputted as a comma separated .csv file; these values are submitted to MIMIC and converted to β values for each probe.
- 3. The number of probes successfully reporting β values out of the 17 is assessed for each sample, <u>imputation</u> (exploiting our own MassARRAY cohort) is used to impute any missing values using <u>multiple imputation (MI)</u> modelling utilising a <u>Bootstrap Expectation</u> <u>Maximisation</u> (BEM) algorithm implemented in the <u>Amelia package</u>. We can efficiently impute missing values of up to 6 missing probes, if a sample has more missing values it is said to have failed Probe QC and is not classified.

Overview

- A multi-class optimised <u>Support Vector Machine</u> (SVM) validated and trained on our extensive 450k medulloblastoma cohort is used to robustly assign a subgroup to samples by their 17 β values.
 - Our SVM is validated using a bootstrapping technique via 1,000 random iterations of 80% of the training set, confidence interval derived from this is plotted on the Classification Graph as a box plot.
 - The final probability assignment for a subgroup call is made by creating an SVM model with the whole 450k training set; these probabilities are given in the Classification Table in the initial tab.
 - Calls made with a probability below our predefined threshold are considered unreliable and samples will be labeled as Unclassifiable in the Classification Table, these samples will not be plotted in the Classification Graph.
- 5. Various post processing and formatting operations on the data take place with the interactive website being implemented in the R <u>Shiny</u> reactive web application framework.

Things to consider in Shiny app development

Easiest shiny app is simply to <u>wrap all calculations + plot in a single renderPlot ({})</u> function • Will cause re-run of classification each time you resize the plot, need to <u>isolate calculations</u> from output

Speeding up code, I added mclapply calls in place of lapply where performance gains could be had (not all uses warranted mclapply)

• Run time down from +30 seconds to around 5 seconds

Shiny app development started after the classifier was almost finished, app code need to work like a shim around an existing code base

• If you can develop app from ground up

Most **R scripts not suited to an app** in terms of output weird tables and vectors only author understands, in addition no error handling either, script **run by hand line by line interactively**

More lines of code for web app now than classifier, most of which deals with applying thresholds, handling QC failure at sample level and or classification failure, and giving graceful output in addition to lots of formatting and data munging

Acknowledgments

Feature selection of informative probes from 450k cohort: <u>Amir Enshae & Reza</u>
Machine learning and classifier code: <u>Reza Rafiee</u>
Shiny web app code and adaptation: <u>Matthew Bashton</u>
Project concept and MassARRAY file parser: <u>Ed Schwalbe</u>